健康寿命的延长

通过注入干细胞,有延长健康寿命的可能性。

最近的干细胞研究证明,
通过干细胞的持久再生,可以一生保持多数器官的健康。
与其相反干细胞老化(stem cell aging)会导致脏器,组织的加龄变化。
也就是说,在加龄变化中,干细胞起着本质性作用已被医学性地认知、
「幹細胞」=「長寿研究の中核」。

02

身体的细胞,经常受到各种各样的老化刺激(例如DNA损伤,端粒缩短,氧化应激・慢性炎症)等。
与此相反,干细胞起着抗老化刺激的作用。
但是,随着年龄的增加,这个平衡也渐渐地崩溃,老化速度胜于再生。
因干细胞的自身复制能力下降和分化异常,细胞死亡的亢进,导致干细胞的枯竭和退化伴随的器官功能的降低。


另外,由于受到紫外线和放射线等,使的遗传基因变异,积累等导致癌化。
在这个研究领域,
干细胞的微小环境(龛环境),即对维持干细胞有着重要功能的龛细胞的老化也有很大的影响。
即,细胞老化是,包括干细胞和壁龛细胞加龄引起的加龄变化现象,理解个体、内脏器官衰老的本质的现象。

在现在的超高龄社会,对在医院不健康地延长寿命产生疑问的人越来越多,
因医疗进步寿命延长的现在,今后必要的是健康地经历岁月(健康寿命)。

干细胞和壁龛细胞的加龄变化(“细胞老化”)是内脏器官细胞老化和年龄相关疾病的原因。
对其研究在全世界进行着。
在这种社会的需求和科学的进步为背景下,
从“细胞老化”新的观点上,本院努力致力于“健康寿命的延长”这个人类的课题。


干细胞到达目标器官的机制

stemcell
干细胞能够接受由损伤部位发出的SDF-1讯号,前往损伤部位。一旦完成损伤部位的治疗,便会前往下一个发出讯号的损伤部位进行治疗。(打带跑现象)MSC: Messenchymal StemCell 间叶系干细胞

证明能延长健康寿命根据的论文

Nature Communications 3, Article number: 608 doi:10.1038/ncomms1611,Published 03 January 2012
Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model
Mitra Lavasani, Andria R. Robinson, Aiping Lu, Minjung Song, Joseph M. Feduska, Bahar Ahani, Jeremy S. Tilstra, Chelsea H. Feldman, Paul D. Robbins, Laura J. Niedernhofer & Johnny Huard
ABSTRACT
With ageing, there is a loss of adult stem cell function. However, there is no direct evidence that this has a causal role in ageing-related decline. We tested this using muscle-derived stem/progenitor cells (MDSPCs) in a murine progeria model. Here we show that MDSPCs from old and progeroid mice are defective in proliferation and multilineage differentiation. Intraperitoneal administration of MDSPCs, isolated from young wild-type mice, to progeroid mice confer significant lifespan and healthspan extension. The transplanted MDSPCs improve degenerative changes and vascularization in tissues where donor cells are not detected, suggesting that their therapeutic effect may be mediated by secreted factor(s). Indeed, young wild-type-MDSPCs rescue proliferation and differentiation defects of aged MDSPCs when co-cultured. These results establish that adult stem/progenitor cell dysfunction contributes to ageing-related degeneration and suggests a therapeutic potential of post-natal stem cells to extend health.


STEM CELLS TRANSLATIONAL MEDICINE 2015;4:1–11
Health Span-Extending Activity of Human Amniotic Membrane- and Adipose Tissue-Derived Stem Cells in F344 Rats
DAJEONG KIM, JANGBEEN KYUNG, DONGSUN PARK, EHN-KYOUNG CHOI, KWANG SEI KIM, KYUNGHA SHIN, HANGYOUNG LEE, IL SEOB SHIN, SUNG KEUN KANG, JEONG CHAN RA, YUN-BAE KIM
ABSTRACT
Aging brings about the progressive decline in cognitive function and physical activity, along with losses of stem cell population and function. Although transplantation of muscle-derived stem/progenitor cells extended the health span and life span of progeria mice, such effects in normal animals were not confirmed. Human amniotic membrane-derived mesenchymal stem cells (AMMSCs) or adipose tissue-derived mesenchymal stem cells (ADMSCs) (1〜3×10^6 cells per rat) were intravenously transplanted to 10-month-old male F344 rats once a month throughout their lives. Transplantation of AMMSCs and ADMSCs improved cognitive and physical functions of naturally aging rats, extending life span by 23.4% and 31.3%, respectively. The stem cell therapy increased the concentration of acetylcholine and recovered neurotrophic factors in the brain and muscles, leading to restoration of microtubule-associated protein 2, cholinergic and dopaminergic nervous systems, microvessels, muscle mass, and antioxidative capacity. The results indicate that repeated transplantation of AMMSCs and ADMSCs elongate both health span and life span, which could be a starting point for antiaging or rejuvenation effects of allogeneic or autologous stem cells with minimum immune rejection.

健康寿命的指标「加龄基因的年龄」

在本院通过测定加龄基因的年龄,验证和健康寿命的关联性。测定寿命在现阶段是困难的,但是,通过量化老化的遗传基因信息,可以预估健康寿命。
通过检测末梢血液遗传基因轮廓,可以预测加龄基因的年龄。检测是以实时荧光定量(PCR),或DNA微阵列技术进行遗传因子解析。


Biochem Biophys Res Commun. 2012 Feb 10;418(2):313-8.
Identification of blood biomarkers of aging by transcript profiling of whole blood.
Nakamura S, Kawai K, Takeshita Y, Honda M, Takamura T, Kaneko S, Matoba R, Matsubara K.
Abstract
Immunological changes that inevitably occur with aging are related to the onset of various diseases including autoimmune diseases, immunodeficiency, as well as other age-reflecting (AR) diseases. They are becoming serious problems in the global trend of longevity. To understand the AR changes, we searched for genes whose expression profiles in the whole peripheral blood change dramatically as a function of age using the Agilent whole human genome 44K microarray. After examining two cohorts consisting of 154 healthy people between age 23 and 77, we discovered 16 transcripts strongly and reproducibly correlated with age. Analysis using a publicly available gene expression dataset for a variety of human immune cells revealed that some of these transcripts were highly expressed in specific cell types whose number and function are known to change with age. This analysis shed light on the molecular mechanism of AR immunological system changes. Because of its simplicity, the assay system is expected to be useful for understanding individual health conditions.

关于加龄基因年龄的论文目录

是根据2016年1月为止的科学信息而编辑制作的。 文中的数字是以国际科学杂志上刊登的学术论文作为依据的。
Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 6, 8570 (2015). Nakamura, S. et al. Identification of blood biomarkers of aging by transcript profiling of whole blood. Biochem. Biophys. Res. Commun. 418, 313・ (2012).
Hardie, D. L. et al. The stromal cell antigen CD248 (endosialin) is expressed on naive CD8+ human T cells and regulates proliferation. Immunology 133, 288・5 (2011).
Fagnoni, F. F. et al. Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95, 2860・ (2000).
Watkins, N. A. et al. A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood 113, e1・ (2009).
Abbas, A. R. et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 6, 319・1 (2005).
Valle-Rios, R. et al. Isthmin 1 Is a Secreted Protein Expressed in Skin, Mucosal Tissues, and NK, NKT, and Th17 Cells. J. Interf. Cytokine Res. 34, 795・01 (2014).
Yuan, B. et al. Isthmin inhibits glioma growth through antiangiogenesis in vivo. J. Neurooncol. 109, 245・2 (2012). Xiang, W. et al. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice. J. Cell. Mol. Med. 15, 359・4 (2011).
Al Nimer, F. et al. Comparative Assessment of the Prognostic Value of Biomarkers in Traumatic Brain Injury Reveals an Independent Role for Serum Levels of Neurofilament Light. PLoS One 10, e0132177 (2015). Celikbilek, A. et al. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy. Mol. Biol. Rep. 41, 4017・2 (2014).
Modvig, S. et al. Cerebrospinal fluid neurofilament light chain levels predict visual outcome after optic neuritis. Mult. Scler. (2015). doi:10.1177/1352458515599074
Weydt, P. et al. Neurofilaments levels as biomarkers in asymptomatic and symptomatic familial ALS. Ann. Neurol. (2015). doi:10.1002/ana.24552 de Jong, D. et al. CSF neurofilament proteins in the differential diagnosis of dementia. J. Neurol. Neurosurg. Psychiatry 78, 936・ (2007).
Skillback, T. et al. CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology 83, 1945・3 (2014).4
Hallquist, N. A., Khoo, C. & Cousins, R. J. Lipopolysaccharide regulates cysteine-rich intestinal protein, a zinc-finger protein, in immune cells and plasma. J. Leukoc. Biol. 59, 172・ (1996).
Lanningham-Foster, L. et al. Overexpression of CRIP in transgenic mice alters cytokine patterns and the immune response. Am. J. Physiol. Endocrinol. Metab. 282, E1197・03 (2002).
Khoo, C., Hallquist, N. A., Samuelson, D. A. & Cousins, R. J. Differential expression of cysteine-rich intestinal protein in liver and intestine in CCl4-induced inflammation. Am. J. Physiol. 270, G613・ (1996).
Kahmann, L. et al. Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res. 11, 227・7 (2008).
Shankar, A. H. & Prasad, A. S. Zinc and immune function: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 68, 447S・63S (1998).
Hempe, J. M. & Cousins, R. J. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport. Proc. Natl. Acad. Sci. U. S. A. 88, 9671・ (1991).
Cousins, R. J. & Lanningham-Foster, L. Regulation of cysteine-rich intestinal protein, a zinc finger protein, by mediators of the immune response. J. Infect. Dis. 182 Suppl , S81・ (2000).
Wong, C. P. & Ho, E. Zinc and its role in age-related inflammation and immune dysfunction. Mol. Nutr. Food Res. 56, 77・7 (2012).
Damkier, H. H., Aalkjaer, C. & Praetorius, J. Na+-dependent HCO3- import by the slc4a10 gene product involves Cl- export. J Biol Chem 285, 26998・7007 (2010).
Jacobs, S. et al. Mice with targeted Slc4a10 gene disruption have small brain ventricles and show reduced neuronal excitability. Proc. Natl. Acad. Sci. U. S. A. 105, 311・16 (2008).
Gurnett, C. A. et al. Disruption of sodium bicarbonate transporter SLC4A10 in a patient with complex partial epilepsy and mental retardation. Arch. Neurol. 65, 550・ (2008).
Parker, M. D. & Boron, W. F. The divergence, actions, roles, and relatives of sodium-coupled bicarbonate transporters. Physiol. Rev. 93, 803・59 (2013).
Parker, M. D. et al. Characterization of human SLC4A10 as an electroneutral Na/HCO3 cotransporter (NBCn2) with Cl- self-exchange activity. J. Biol. Chem. 283, 12777・8 (2008).
Pilling, L. C. et al. Gene expression markers of age-related inflammation in two human cohorts. Exp. Gerontol. 70, 37・5 (2015).
Farwell, W. R. & Taylor, E. N. Serum anion gap, bicarbonate and biomarkers of inflammation in healthy individuals in a national survey. CMAJ 182, 137・1 (2010).
Guo, L. et al. Common variants in the Na(+)-coupled bicarbonate transporter genes and salt sensitivity of blood pressure: the GenSalt study. J. Hum. Hypertens. (2015). doi:10.1038/jhh.2015.113